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Abstract— The switch architecture with the combined input-
crosspoint queueing (CICQ) scheme has been recognized as
a practical promising solution for building cost-effective high-
performance switches. In an N ×N CICQ switch, the switching
fabric is a nonblocking buffered crossbar, a large input buffer is
provided at each input and a relatively small internal buffer is
provided at each crosspoint of the buffered crossbar. Each input
buffer is logically organized as N virtual output queues (VOQs).
In this paper, we build the queueing model for evaluating the
delay performance of a CICQ switch under i.i.d uniform 2-state
Markov Modulated Bernoulli Process (2-MMBP) bursty traffic.
The accuracy of the queuing model is examined via computer
simulation, by investigating the mean cell delay in a switch as
a function of the switch size, the internal buffer size, the mean
offered load and the mean burst length. The numerical results
show that our queueing model can well analyze the reality.

Index Terms— Combined input-crosspoint queueing switch,
queueing analysis, simulation, performance modelling.

I. INTRODUCTION

The combined input-crosspoint queueing (CICQ) switch
architecture has attracted lots of research interests from the
academic and industrial communities [1]–[5] and has been
well recognized as a practical promising choice for building
scalable high-speed switches. A CICQ switch uses VOQ at
each input port and a buffered crossbar (BX) as the switching
fabric. In an N × N BX, an internal buffer situates at the
crosspoint of each pair of input and output, resulting in a total
of N2 internal buffers. Each internal buffer is typically very
small, ranging from several to tens cells. In a CICQ switch,
the major buffer space for queueing packets is provided by
the input buffers at the input ports, i.e. the VOQ buffers;
the internal buffers at the BX are mainly used for designing
distributed scheduling algorithms that can resolve input/output
ports contentions faster and better.

When the performance of a switch is evaluated, two very
important measures are the throughput and the mean cell delay
of the switch under a given traffic, i.e. the delay-throughput
performance. A lot of simulation studies have been contributed
on evaluating the delay and throughput performances of CICQ
switches with various scheduling algorithms and traffic [1],
[6]. In contrast, there are only a few analytical studies on
the delay and throughput performances of CIOQ switches.
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For examples, the throughput performance of a CICQ switch
under uniform Bernoulli or bursty traffic is analyzed in [7]–
[9]; and a network calculus-based analysis for the delay bound
of a CICQ switch is done in [10] using a service-curve
based model. However, to the best of our knowledge, so far,
there is no queueing analysis model published for evaluating
the delay performance of a CICQ switch under Bernoulli or
bursty traffic. While there are quite many queueing analysis
models available for evaluating the delay performances of
the other sorts of switches, e.g., output queueing, IQ (FIFO
and VOQ) and shared-centralized queuing switches, there is
a need in practice for us to develop a queueing model to
theoretically analyze the delay performance of a CICQ switch.
Our contribution in this paper is dedicated to this.

We build in this paper a queueing model for evaluating the
delay performance of a CICQ switch under i.i.d uniform 2-
state MMBP (Markov Modulated Bernoulli Process) bursty
traffic, where both the input and the output scheduling employ
the random selection policy. The rest of this paper is organized
as the following. We first describe in Section II the system
model and then build in Section III the queuing model. In
Section IV, the accuracy of the queueing model is examined
by computer simulation.

II. THE SWITCH MODEL

A. Switch Architecture

The general CICQ switch model introduced in [1] is adopted
here, which includes four main components:

• Input buffers: each input port has an input buffer orga-
nizing as N VOQs for queuing arriving cells, one queue
for each output port.

• Crosspoint buffer: a crosspoint buffer (XB) is provided
at each crosspoint inside the buffered crossbar.

• Flow control: it is a common practice to employ some
kind of flow control mechanism to avoid overflows at
each XB. Such a flow control scheme ensures that when
a XB is full, the corresponding VOQ is not eligible for
input arbitration.

• Input/output arbitration: each input arbiter selects ac-
cording to the input arbitration policy a nonempty and
eligible VOQ for sending a cell to the corresponding XB,
and each output arbiter selects according to the output
arbitration policy a cell from the corresponding nonempty
XB to depart.

From the above description, we see that the total delay of a
cell in a CICQ switch consists of two parts: the delay in the
input buffer and that in the crosspoint buffer. In our queueing
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Fig. 1. The timing of events in the switch.

model developed below, these two parts are solved individually
and summed up as the total delay.

B. Assumptions

We lists the below general assumptions for developing the
queueing model:

1) The switch is symmetric N ×N and each input/output
port operates at the same speed.

2) The sizes of each VOQ and each XB are infinite and s,
respectively.

3) The switch is operating synchronously over fixed size
time slots, where each time slot is normalized as the
time interval for transmitting a cell at the input/output
port speed;

4) Each time slot comprises two phases in sequence: the
input scheduling phase and the output scheduling phase;

5) Both the input and the output arbitrations uses the
random selection policy, i.e. to select one randomly from
all participating candidates of a contention;

6) Cell losses in the switch are rare, which implies that the
mean arrival and the mean departure rates at any buffer
in the switch are equal;

7) The destinations of arriving cells at the input ports are
uniformly distributed, i.e., each arriving cell is destined
to any output port with a probability 1/N ;

8) The traffic at each input port is i.i.d, with a mean load
Nλ;

9) At most one cell can arrive at each input port only at
the beginning of a time slot;

10) At most one cell can depart at each output port only at
the end of a time slot.

The timing of events in the switch model is summarized by
Fig. 1.

III. QUEUEING MODEL UNDER 2-MMBP TRAFFIC

A. General Idea

The queueing model in [11] for the VOQ switch under uni-
form 2-state Markov-Modulated Bernoulli Process (2-MMBP)
traffic is built by solving the underlying Quasi-Birth-Death
(QBD) Markov chains of the systems. Naturally, for the CICQ
switch under uniform 2-MMBP traffic, a queuing model can
be built as a QBD with each state encoded as a 5-tuplet
(g, Li,Wi, Lx,Wx), where g, Li, Wi, Lx and Wx are the
state of the 2-MMBP traffic at the tagged VOQ, the lengths
of the tagged VOQ, the tagged input virtual HOL queue, the
tagged crossbar queue (XQ) and the tagged crossbar virtual

Buffered crossbar

Output port 1 Output port NOutput port 2

Tagged XQ

Tagged crossbar virtual HOL queueTagged input virtual HOL queue

Tagged VOQ

Input port 1

Input port 2

Input port N

Fig. 2. The queueing models for the tagged input buffer and the tagged
crossbar buffer

HOL queue, respectively, as shown in Fig. 2. However, such
a state space will grow exponentially when the sizes of the
switch and the XB increase. To avoid a computation intractable
huge state space, instead of modeling the system by a single
Markov chain, we will use two decoupled queueing systems
to build the queuing model of the whole system, one for the
tagged XQ and one for the tagged VOQ, respectively.

To decouple the tagged XQ and the tagged VOQ from
each other, we build the queueing models for them separately.
Specifically, the tagged VOQ is modeled as a 2-MMBP/G/1
queueing system which mean service time can be computed
when the queueing model for the tagged XQ is solved. In
the rest of this paper, we will further exploit this idea to
build the queueing model for the switch under i.i.d uniform
2-MMBP bursty traffic. In general, we will employ an iterative
computation approach to solve firstly the queueing model for
the tagged XQ and then that for the tagged VOQ, by holding
the fact that the throughputs of the studied systems will equal
the offered loads when the systems approach steady states.

B. The Tagged XQ

The 2-MMBP traffic governed by two parameters α and β
is depicted in Fig. 3, which is widely used as a model for
bursty traffic with arrivals correlated in a long term. A state
transition of the offered 2-MMBP traffic at each input port
can occur only at the beginning of each time slot. A 2-MMBP
can generate a cell in two cases: (1) from the ON state back
to the ON state with a probability α, and (2) from the OFF
state to the ON state with a probability 1 − β. Each cell is
uniformly destined for any output port with a probability of
1/N . Given the mean burst length τ and the mean arrival
rate Nλ of the traffic at each input port, the parameters α
and β of a 2-MMBP can be calculated as α = 1 − 1/τ and
β = (1−Nλ(2− α))/(1−Nλ), respectively [11].

A 2-MMBP actually consists of two interleaving Bernoulli
processes for the states ON and OFF, each with its own cell
generation probability: α for the state ON and 1 − β for the
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Fig. 3. The 2-MMBP bursty traffic model.

state OFF, respectively. In Fig. 2, noticed that when the tagged
XQ is not full, a HOL cell of the tagged VOQ can be blocked
only by cells at input port 1, which is analogous to increase the
probability for a cell to be destined to output port 1 when the
cell is generated by the 2-MMBP at the input 1. To take this
characteristics into account in the traffic model for the tagged
XQ, by biasing the probability for a cell arriving at input port
1 to be destined for output port 1 from 1/N to η2/(Nλ), we
have the below traffic model assumed for cells arriving at the
tagged XQ in a CICQ switch under a 2-MMBP traffic with a
mean load Nλ and a mean burst length τ .

Traffic Model 1: The cells arriving process at the input 1
of the buffered crossbar is a 2-MMBP with α = (1 − 1/τ),
β = (1−Nλ(2−α))/(1−Nλ), each arriving cell is destined
for the output 1 with a probability γ = η2/(Nλ) if the tagged
XQ is not full, or else with a probability 0.

With the above traffic model, the tagged XQ is offered
with a mean load of η2 when it is not full. As examined
by the simulations presented later, this assumed traffic model
for the tagged XQ can render us a very accurate queueing
model for the buffered crossbar under uniform 2-MMBP
traffic. To develop the queueing model, η2 is supposed to be
a known parameter, which can be computed using an iterative
computation method once the queueing model is built. In the
rest of this subsection, two Markov chains are built and solved
for the tagged XQ in respect to whether the size of crossbar
buffer is larger than 1 or not, i.e., for s > 1 and s = 1,
respectively.

1) Markov Chain for s > 1: Each state of the Markov chain
Z is expressed as a triplet (L,G,W ) sampled at the end of
each time slot, where L, G and W refer to the length of the
tagged XQ, the state of the 2-MMBP traffic at the tagged XQ
(modeled by Traffic Model 1) and the length of the tagged
crossbar virtual HOL queue (XVHQ), respectively. The state-
space of this three-dimension Markov chain is

{(0, g, 0), (l, g, w)|l ∈ [1, s], g ∈ [0, 1], w ∈ [1, N ]}

and all states are ordered in the lexicographic order, i.e.

((0, g, 0), (1, 0, 1), . . . , (s, 0, N), (s, 1, 1), . . . , (1, 1, N)

where g = 0 and g = 1 represent that the 2-MMBP at
the tagged XQ are in the states OFF and ON, respectively.
The transition probability matrix T of the Markov chain Z is

defined below:

T =




C1 C2 0
C0 A1 A2 0
0 A0 A1 A2 0
0 0 A0 A1 A2 0
...

...
...

...
...

...
0 0 0 · · · · · · · · · 0 A0 A1 A2

0 0 0 · · · · · · · · · 0 0 D0 D1




where C1+C2e1 = 1, C0+(A1+A2)e1 = (A0+A1+A2)e =
(D0 + D1)e1 = e1 and e1 is a column vector of ones of
size 2N . The steady-state probability vector of Z is given by
Π = (π(0,g), π(1,g), ..., π(s,g)) where each element π(l,g) =
(π(l,g,1), π(l,g,2), ..., π(l,g,N)), l ∈ [1, s], is a row vector of size
N , and π(0,g) is a scalar. Let’s denote π0 = π(0,0)+π(0,1). The
steady-state probabilities for the states in level l are denoted by
πl = (π(l,0), π(l,1)), where π(l,0) and π(l,1) are the probability
vectors with the traffic at the tagged XQ being in the states 0
and 1, respectively.

let Pblo,Wt(w′)|Wt−1(g,w) (P ′blo,Wt(w′)|Wt−1(g,w), respec-
tively) denote the joint probability that the HOL cell of the
tagged XQ is blocked and there is (is not, respectively) a new
cell arrival at the tagged XQ at the beginning of the current
output scheduling phase, and similarly Psuc,Wt(w′)|Wt−1(g,w)

(P ′suc,Wt(w′)|Wt−1(g,w), respectively) denote the joint probabil-
ity that the HOL cell of the tagged XQ is transmitted and there
is (is not, respectively) a new cell arrival at the tagged XQ at
the beginning of the current output scheduling phase, given
the following: 1) at the end of the last time slot, the traffic
source at the tagged XQ is in state g and the length of the
tagged XVHQ is w ∈ [1, N ], and 2) at the end of the current
time slot, the lengths of the tagged XVHQ is w′ ∈ [1, N ].

In case that there is a new cell arriving at the tagged XQ at
the beginning of the current output scheduling phase, we define
six matrices B(g), B(g)

0 and S(g) as Eq.(1)(2)(3), respectively,
where g ∈ [0, 1]. For the case that there is no cell arriving
at the tagged XQ, we define another six matrices B′(g),
B
′(g)
0 and S′(g) similar to B(g), B(g)

0 and S(g), by replac-
ing Pblo,Wt(w′)|Wt−1(g,w) in B(g) with P ′blo,Wt(w′)|Wt−1(g,w),

Pblo,Wt(w′)|Wt−1(g,0) in B
(g)
0 with P ′blo,Wt(w′)|Wt−1(g,0) and

Psuc,Wt(w′)|Wt−1(g,w) in S(g) with P ′suc,Wt(w′)|Wt−1(g,w), re-
spectively.

Using these definitions, the sub-matrices in the transition
matrix T are computed as

C0 =

(
H0e (S′(0) − H0)e

H1e (S′(1) − H1)e

)
, C1 =

(
β 1 − β − B

(0)
0

e

1 − α α − B
(1)
0

e

)
,

C2 =

(
zr B

(0)
0

zr B
(1)
0

)
, A0 =

(
H0 S′(0) − H0
H1 S′(1) − H1

)
,

A1 =

(
G0 S(0) + B′(0) − G0
G1 S(1) + B′(1) − G1

)
, A2 =

(
zm B(0)

zm B(1)

)
,

D0 =

(
H0 S(0) + S′(0) − H0
H1 S(1) + S′(1) − H1

)
, D1 =

(
G0 B(0) + B′(0) − G0
G1 B(1) + B′(1) − G1

)
,

In the above matrices, e is a column vector of ones of size
N , zr is a row vector of zeros of size N , zm is an N×N matrix
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B
(g)
0 =

(
Pblo,Wt(1)|Wt−1(g,0) Pblo,Wt(2)|Wt−1(g,0) · · · Pblo,Wt(n)|Wt−1(g,0)

)
(1)

B(g) =




Pblo,Wt(1)|Wt−1(g,1) Pblo,Wt(2)|Wt−1(g,1) · · · Pblo,Wt(n)|Wt−1(g,1)

Pblo,Wt(1)|Wt−1(g,2) Pblo,Wt(2)|Wt−1(g,2) · · · Pblo,Wt(n)|Wt−1(g,2)

Pblo,Wt(1)|Wt−1(g,3) Pblo,Wt(2)|Wt−1(g,3) · · · Pblo,Wt(n)|Wt−1(g,3)

...
... · · · ...

Pblo,Wt(1)|Wt−1(g,n) Pblo,Wt(2)|Wt−1(g,n) · · · Pblo,Wt(n)|Wt−1(g,n)


 (2)

S(g) =




Psuc,Wt(1)|Wt−1(g,1) Psuc,Wt(2)|Wt−1(g,1) · · · Psuc,Wt(n)|Wt−1(g,1)

Psuc,Wt(1)|Wt−1(g,2) Psuc,Wt(2)|Wt−1(g,2) · · · Psuc,Wt(n)|Wt−1(g,2)

Psuc,Wt(1)|Wt−1(g,3) Psuc,Wt(2)|Wt−1(g,3) · · · Psuc,Wt(n)|Wt−1(g,3)

...
... · · · ...

Psuc,Wt(1)|Wt−1(g,n) Psuc,Wt(2)|Wt−1(g,n) · · · Psuc,Wt(n)|Wt−1(g,n)


 (3)

of zeros, H0 = (S(0)β)/((1−β)γ), H1 = (S(1)(1−α))/(αγ),
G0 = (B(0)β)/((1−β)γ) and G1 = (B(1)(1−α))/(αγ). The
success and blocking probability are computed by Eq.(6)-(17),
where the the parameters in the formulas are defined as below:
• η3: the probability that there is a new cell arriving at

the tagged XQ at the beginning of an output scheduling
phase given that the tagged XQ is empty at the end of
the last time slot,

η3 =
(π(0,0)(1− β) + π(0,1)α)γ

π(0,0) + π(0,1)
.

• p0: the probability that the tagged XQ is empty at the
beginning of an output scheduling phase,

p0 = (1− (1− β)γ)π(0,0) + (1− αγ)π(0,1).

For denotation convenience, let p1 = 1− p0.
• l1: the probability that given the tagged XQ is nonempty

at the end of the last time slot, the length of the tagged
XQ is 1 at the beginning of the current output scheduling
phase,

l1 =
π(1,0)e(1− (1− β)γ) + π(1,1)e(1− αγ)

1− π0
(4)

• l2: the probability that given the tagged XQ is nonempty
at the beginning of an output scheduling phase, the length
of the tagged XQ is 1,

l2 =
π(0,0)(1− β)γ + π(0,1)αγ

p1
+

π(1,0)(1− (1− β)γ) + π(1,1)(1− αγ)
p1

(5)

2) Computing the Mean Cell Delay in the Tagged XQ: Let
Q be the mean queue length of the tagged XQ, we have

Q =
s∑

l=1

lπle1 (18)

Given the tagged XQ has a throughput of λ, from Q, the
mean cell delay D in the tagged XQ can be computed by
Little’s Law as

D =
Q

λ
(19)

3) The Iterative Computation Algorithm: An iterative com-
putation method is employed to calculate the parameter η2 and
solve the queueing models in both cases for s > 1 and s = 1.
Notice that when a queueing model in this context is steady
under an offered load, its throughput must equal to the load,
which implies

λ = γ((1− β)(
∑s−1

l=1 lπ(l,0)e+ π(0,0))+
α(
∑s−1

l=1 lπ(l,1)e+ π(0,1)))
(20)

The queueing model can be solved by an iterative compu-
tation method. First, we initiate η2, π(0,0) and π(0,1) by some
values, e.g., η2 = λ and π0,0 = π(0, 1) = 1/(2sN), and we
get the Markov chain Z with its transition matrix T being
computed using the initiated parameters η2, π(0,0) and π(0,1).
Then, we solve Z for new π(0,0) and π(0,1) and use Eq.(20) to
update η2. This process is repeated until the three parameters
are converged to their steady values. At last, from the solved
Z, we can computed the mean cell delay in the tagged XQ
using Eq.(18)(19).

4) Markov Chain for s = 1: In general, the Markov Chain
Z in this case can be constructed similar to that of the previous
case for s > 1, with some slight differences: (1) the state
(1, g,N) will not appear when s = 1, for each XQ winning an
output arbitration in a time slot will be empty at the end of the
time slot; and (2) we don’t need π1 in computing the transition
probabilities, for both the probabilities l1 and l2 equal to 1 in
this case. Therefore, the Markov Chain Z in this case is three-
dimensional given by

{(0, g, 0), (1, g, w)|g ∈ [0, 1], w ∈ [1, N − 1]},
and all states are ordered in the lexicographic order, i.e.

(0, 0, 0), (0, 1, 0), (1, 0, 1), (1, 0, 2), . . . , (1, 1, N − 1).

Similarly, the transition matrix T can be constructed like
that in the immediately previous case for s > 1.

Fig. 4 shows the numerical results from the queueing models
and the simulations for the mean cell delays in the buffered
crossbar as the functions of the XB sizes and the mean offered
loads, for two switch sizes of 16 and 32, and two mean burst
lengths of 16 and 32. Because that for a given mean burst
length τ the maximum mean offered load is τ/(τ + 1), the
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P
suc,Wt(w′)|Wt−1(0,w) = (1 − β)γ

1

w′
(N − w

w′ − w

)
η
(w′−w)
3

(1 − η3)(N−w′)
, 0 < w ≤ w

′ ≤ N (6)

P
suc,Wt(w′)|Wt−1(1,w) = αγ

1

w′
(N − w

w′ − w

)
η
(w′−w)
3

(1 − η3)(N−w′)
, 0 < w ≤ w

′ ≤ N (7)

P
blo,Wt(w′)|Wt−1(0,w) = (1 − β)γ(

w − 1

w′
(N − w

w′ − w

)
η
(w′−w)
3

(1 − η3)(N−w′)(1 − l1)

+
w − 1

w′ + 1

( N − w

w′ + 1 − w

)
η
(w′+1−w)
3

(1 − η3)(N−w′−1)
l1

+
w′ − w + 1

w′ + 1

( N − w

w′ + 1 − w

)
η
(w′+1−w)
3

(1 − η3)(N−w′−1)), 1 ≤ w − 1 < w
′

< N (8)

P
blo,Wt(w′)|Wt−1(1,w) = αγ(

w − 1

w′
(N − w

w′ − w

)
η
(w′−w)
3

(1 − η3)(N−w′)(1 − l1)

+
w − 1

w′ + 1

( N − w

w′ + 1 − w

)
η
(w′+1−w)
3

(1 − η3)(N−w′−1)
l1

+
w′ − w + 1

w′ + 1

( N − w

w′ + 1 − w

)
η
(w′+1−w)
3

(1 − η3)(N−w′−1)), 1 ≤ w − 1 < w
′

< N (9)

Pblo,Wt(w−1)|Wt−1(0,w) = (1 − β)γl1, 1 < w ≤ N (10)

Pblo,Wt(w−1)|Wt−1(1,w) = αγl1, 1 < w ≤ N (11)

Pblo,Wt(N)|Wt−1(0,w) = (1 − β)γ
w − 1

N
η
(N−w)
3

(1 − l1), 1 < w ≤ N (12)

Pblo,Wt(N)|Wt−1(1,w) = αγ
w − 1

N
η
(N−w)
3

(1 − l1), 1 < w ≤ N (13)

P
blo,Wt(w′)|Wt−1(0,0) = (1 − β)γ(

w′ − 1

w′
(N − 1

w′ − 1

)
p
(w′−1)
1

p
(N−w′)
0

(1 − l2)

+
w′

w′ + 1

(N − 1

w′
)

p
w′
1 p

(N−1−w′)
0

l2), 0 < w
′ ≤ N (14)

P
blo,Wt(w′)|Wt−1(1,0) = αγ(

w′ − 1

w′
(N − 1

w′ − 1

)
p
(w′−1)
1

p
(N−w′)
0

(1 − l2)

+
w′

w′ + 1

(N − 1

w′
)

p
w′
1 p

(N−1−w′)
0

l2), 0 < w
′ ≤ N (15)

Pblo,Wt(N)|Wt−1(0,0) = (1 − β)γ
N − 1

N
p
(N−1)
1

(1 − l2) (16)

Pblo,Wt(N)|Wt−1(1,0) = αγ
N − 1

N
p
(N−1)
1

(1 − l2) (17)

maximum mean offered load in the figures is chosen to be
0.9. For the switches under investigation, the results from the
queueing models and the simulations are very close and nearly
indistinguishable, which confirms that the assumptions for the
queueing model are reasonable.

C. The Tagged VOQ

Under uniform 2-MMBP traffic, we model the tagged VOQ
as a 2-MMBP/G/1 system. Given the mean inter-arrival time
is known, this queuing system can be solved if its mean
service time is known. We consider the mean service time
is determined by two parameters: (1) the probability of the
tagged XQ is full, and (2) the probability that the VOQ wins
in the input scheduling phase. Let ts = tf + tnf denote the
mean service time for an HOL cell at the tagged VOQ, where
tf and tnf given in Eq.(21)(22) are the geometry distributed
mean times for the HOL cell sees the tagged XQ being full and
non-full before it is forwarded to the tagged XQ, respectively,

tf = (1− πse)−1 − 1 (21)

tnf =

(
N−1∑
i=0

1
i+ 1

ξi(1− ξ)(N−1−i)

)−1

(22)

where ξ is the probability that the tagged VOQ is valid for
input arbitration in a time slot, which is given by

ξ = (1− v00(1− (1− β)γ)− v01(1− αγ))
(1− (π(s,0) + π(s,1))e) (23)

where v00 and v01 denote the probabilities that at the end of
the last time slot, the tagged VOQ is empty and the traffic is
in the states OFF and ON, respectively.

This 2-MMBP/G/1 queueing system can be solved using an
iterative computation method. First, we initiate ts by some
value, saying 1/λ for example. Next, we compute v0 by
solving this queueing system with the given ts. Then, we
can renew the value of ts using Eq.(21)(22). This process is
repeated until ts is converged. Given ts, we can computed the
mean cell delay in the tagged VOQ. Combining the mean cell
delays in the tagged VOQ and the tagged XQ, the mean total
cell delay in the CICQ switch is obtained.

IV. NUMERICAL RESULTS

A set of simulation experiments were conducted to verify
the accuracy of the built queuing model. Both the simulators
and the computing programs for the queuing model are imple-
mented by Matlab and the simulations were run long enough
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Fig. 4. Mean cell delays in the buffered crossbar vs. mean loads, 2-MMBP bursty traffic.
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Fig. 5. Mean cell delays in the switches vs. mean loads, 2-MMBP bursty traffic with a mean burst length of 16 cells.

to collect sufficient samples for the statistic results with an
90% confidence interval. In Fig. 5, we present the results for
the delay performances of the switches under i.i.d. uniform
2-MMBP bursty traffic with the mean burst length of 16, with
the internal buffer sizes varying from 1 to 16 and two switch
sizes of 16 and 32. From these figures, in general, we can
see that the results from our queueing model are tightly close
to the simulation results. The significant discrepancies can be
observed only when the switches are under extremely heavy
loads approaching to be saturated.

Specifically, we can see from the curves in these figures,
increasing the internal buffer size will bring only slight im-
provements to the delay-throughput performance of a CICQ
switch under uniform 2-MMBP traffic. Such an observation
agree with that from the simulation studies in [1], [12]. This
suggests that in general, an internal buffer size of one cell is
enough for a CICQ switch under uniform traffic to perform
comparatively well against another with a bigger internal
buffer up to tens of cells.
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